المجموعَات وَالزُمر

المجموعَات وَالزُمر
كان جورج كانتور (1845 ـ 1918) أول من قام بدراسة نظرية المجموعات الرياضية، ثم جاء بعده ارنست زرميلو (1871 ـ 1956) فنظم هذه النظرية.
فكرة المجموعة هي حجر الزاوية في الرياضيات. فهي جملة من الأشياء لها وصف أو تعريف مشترك تدرج في اطار واحد، كما هي الحال مثلاً في تعريف المحيطات بالقول: هي الهادى، الأطلسي، الهندي، المتجمد الشمالي، المتجمد الجنوبي. هذا النوع من المجموعات يكوّن مجموعة متناهية، لأن عدد وحداته متناه ومعروف، وهو خمسة في هذا المثل. أما مجموعة الأعداد المستعملة للعدّ (مثل 1 و2 و3… الخ)، ويرمز إليها بحرف (ع)، فهي غير متناهية، لأنه ليس بامكاننا معرفة عدد وحداتها.
مجموعة الأعداد الطبيعية يرمز إليها بحرف ز+ = (1، 2، 3، …)، ووحداتها هي العناصر ذاتها الموجودة في مجموعة أرقام العدّ؛ لذلك نقول أن المجموعتين ع و ز+ متساويتان. لكن إذا تعادل عدد العناصر فقط في مجموعتين، نقول انهما متكافئتان: فالمجموعة (أزرق، اخضر، أصفر، برتقالي، أحمر) متكافئة مع مجموعة المحيطات، لأن لكل منهما خمسة عناصر.
يمكن فهم لغة المجموعات بدراسة مثل خاص. فالمجموعة العامة، أي مجموعة جميع العناصر موضوع البحث، يمكن تقسيمها إلى ما يسمّى مجموعتين فرعيتين، منفصلتين، غير متراكبتين. إذا لم يكن ثمة أكثر من مجموعتين من هذا الصنف، تسمّى احداهما «متمّمة» للاخرى. أما مجموعة الفيلة العائشة في القطب الشمالي، فهي مثل عن المجموعة المسمّاة «الفارغة» أو «المجموعة الصفر»، لأنها لا تحتوي على وحدات قط. تكتب المجموعة الصفر بالرمز ئ مثلاً لا يوجد تقاطع بين المجموعتين أو و ب أو بين ج و د، لذلك فالتقاطع يعادل ئ. ان مفاهيم «التقسيم»، «المتمّم»، «التقاطع»، «الاتحاد» هي اساسية في عملية تصنيف المعلومات.
عن الشبكات /2) ينشأ حاصل الضرب الديكارتي لمجموعتين. يتم ذلك بايجاد جميع العناصر الممكن ترتيبها ازواجاً، وبأخذ عنصر واحد من كل مجموعة. كلمة ديكارتي هي نسبة لرينيه ديكارت (1596 ـ 1650) الذي روّج مبدأ الاحداثيات.